STRUCTURAL ORGANISATION IN ANIMALS | NCERT | BIOLOGY CHAPTER 7

In the preceding chapters you came across a large variety of organisms, both unicellular and multicellular, of the animal kingdom. In unicellular organisms, all functions like digestion, respiration and reproduction are performed by a single cell. In the complex body of multicellular animals the same basic functions are carried out by different groups of cells in a well organised manner. The body of a simple organism like Hydra is made of different types of cells and the number of cells in each type can be in thousands. The human body is composed of billions of cells to perform various functions. How do these cells in the body work together? As you have already learnt in your earlier classes, in multicellular animals, a group of similar cells alongwith intercellular substances perform a specific function. Such an organisation is called tissue.

You may be surprised to know that all complex animals consist of only four basic types of tissues. These tissues are organised in specific proportion and pattern to form an organ like stomach, lung, heart and kidney. When two or more organs perform a common function by their physical and/or chemical interaction, they together form organ system, e.g., digestive system, respiratory system, etc. Cells, tissues, organs and organ systems split up the work in a way that exhibits division of labour and contribute to the survival of the body as a whole.

The basic tissues as you have learnt in earlier classes, organise to form organs which in turn associate to form organ systems in the multicellular organisms. Such an organisation is essential for more efficient and better coordinated activities of millions of cells constituting an organism. Each organ in our body is made of one or more type of tissues. For example, our heart consists of all the four types of tissues, i.e., epithelial, connective, muscular and neural. We also notice, after some careful study that the complexity in organ and organ systems displays certain discernable trend. This discernable trend is called evolutionary trend (You will study the details in class XII).

In this chapter, you are being introduced to morphology and anatomy of frog. Morphology refers to study of form or externally visible features. In the case of plants or microbes, the term morphology precisely means only this. In case of animals this refers to the external appearance of the organs or parts of the body. The word anatomy conventionally is used for the study of morphology of internal organs in the animals. You will learn the morphology and anatomy of frog and Cockroach representing vertebrates.

Frogs can live both on land and in freshwater and belong to class Amphibia of phylum Chordata. The most common species of frog found in India is Rana tigrina.

They do not have constant body temperature i.e., their body temperature varies with the temperature of the environment. Such animals are called cold blooded or poikilotherms. You might have also noticed changes in the colour of the frogs while they are in grasses and on dry land. They have the ability to change the colour to hide them from their enemies (camouflage). This protective coloration is called mimicry. You may also know that frogs are not seen during peak summer and winter. During this period they take shelter in deep burrows to protect them from extreme heat and cold. This is known as summer sleep (aestivation) and winter sleep (hibernation) respectively.

Have you ever touched the skin of frog? The skin is smooth and slippery due to the presence of mucus. The skin is always maintained in a moist condition. The colour of dorsal side of body is generally olive green with dark irregular spots. On the ventral side the skin is uniformly pale yellow. The frog never drinks water but absorb it through the skin.

STRUCTURAL ORGANISATION IN ANIMALS Figure 7.1 External features of frog

Body of a frog is divisible into head and trunk (Figure 7.1). A neck and tail are absent. Above the mouth, a pair of nostrils is present. Eyes are bulged and covered by a nictitating membrane that protects them while in water. On either side of eyes a membranous tympanum (ear) receives sound signals. The forelimbs and hind limbs help in swimming, walking, leaping and burrowing. The hind limbs end in five digits and they are larger and muscular than fore limbs that end in four digits. Feet have webbed digits that help in swimming. Frogs exhibit sexual dimorphism. Male frogs can be distinguished by the presence of sound producing vocal sacs and also a copulatory pad on the first digit of the fore limbs which are absent in female frogs.

The body cavity of frogs accommodate different organ systems such as digestive, circulatory, respiratory, nervous, excretory and reproductive systems with well developed structures and functions (Figure 7.2).

Figure 7.2 Diagrammatic representation of internal organs of frog showing
complete digestive system
Figure 7.2 Diagrammatic representation of internal organs of frog showing complete digestive system

The digestive system consists of alimentary canal and digestive glands. The alimentary canal is short because frogs are carnivores and hence the length of intestine is reduced. The mouth opens into the buccal cavity that leads to the oesophagus through pharynx. Oesophagus is a short tube that opens into the stomach which in turn continues as the intestine, rectum and finally opens outside by the cloaca. Liver secretes bile that is stored in the gall bladder. Pancreas, a digestive gland produces pancreatic juice containing digestive enzymes. Food is captured by the bilobed tongue. Digestion of food takes place by the action of HCl and gastric juices secreted from the walls of the stomach. Partially digested food called chyme is passed from stomach to the first part of the small intestine, the duodenum. The duodenum receives bile from gall bladder and pancreatic juices from the pancreas through a common bile duct. Bile emulsifies fat and pancreatic juices digest carbohydrates and proteins. Final digestion takes place in the intestine. Digested food is absorbed by the numerous finger-like folds in the inner wall of intestine called villi and microvilli. The undigested solid waste moves into the rectum and passes out through cloaca.

Frogs respire on land and in the water by two different methods. In water, skin acts as aquatic respiratory organ (cutaneous respiration). Dissolved oxygen in the water is exchanged through the skin by diffusion. On land, the buccal cavity, skin and lungs act as the respiratory organs. The respiration by lungs is called pulmonary respiration. The lungs are a pair of elongated, pink coloured sac-like structures present in the upper part of the trunk region (thorax). Air enters through the nostrils into the buccal cavity and then to lungs. During aestivation and hibernation gaseous exchange takes place through skin.

The vascular system of frog is well-developed closed type. Frogs have a lymphatic system also. The blood vascular system involves heart, blood vessels and blood. The lymphatic system consists of lymph, lymph channels and lymph nodes. Heart is a muscular structure situated in the upper part of the body cavity. It has three chambers, two atria and one ventricle and is covered by a membrane called pericardium. A triangular structure called sinus venosus joins the right atrium. It receives blood through the major veins called vena cava. The ventricle opens into a saclike conus arteriosus on the ventral side of the heart. The blood from the heart is carried to all parts of the body by the arteries (arterial system). The veins collect blood from different parts of body to the heart and form the venous system. Special venous connection between liver and intestine as well as the kidney and lower parts of the body are present in frogs. The former is called hepatic portal system and the latter is called renal portal system. The blood is composed of plasma and cells. The blood cells are RBC (red blood cells) or erythrocytes, WBC (white blood cells) or leucocytes and platelets. RBC’s are nucleated and contain red coloured pigment namely haemoglobin. The lymph is different from blood. It lacks few proteins and RBCs. The blood carries nutrients, gases and water to the respective sites during the circulation. The circulation of blood is achieved by the pumping action of the muscular heart.

The elimination of nitrogenous wastes is carried out by a well developed excretory system. The excretory system consists of a pair of kidneys, ureters, cloaca and urinary bladder. These are compact, dark red and bean like structures situated a little posteriorly in the body cavity on both sides of vertebral column. Each kidney is composed of several structural and functional units called uriniferous tubules or nephrons. Two ureters emerge from the kidneys in the male frogs. The ureters act as urinogenital duct which opens into the cloaca. In females the ureters and oviduct open seperately in the cloaca. The thin-walled urinary bladder is present ventral to the rectum which also opens in the cloaca. The frog excretes urea and thus is a ureotelic animal. Excretory wastes are carried by blood into the kidney where it is separated and excreted.

The system for control and coordination is highly evolved in the frog. It includes both neural system and endocrine glands. The chemical coordination of various organs of the body is achieved by hormones which are secreted by the endocrine glands. The prominent endocrine glands found in frog are pituitary, thyroid, parathyroid, thymus, pineal body, pancreatic islets, adrenals and gonads. The nervous system is organised into a central nervous system (brain and spinal cord), a peripheral nervous system (cranial and spinal nerves) and an autonomic nervous system (sympathetic and parasympathetic). There are ten pairs of cranial nerves arising from the brain. Brain is enclosed in a bony structure called brain box (cranium). The brain is divided into fore-brain, mid-brain and hind-brain. Forebrain includes olfactory lobes, paired cerebral hemispheres and unpaired diencephalon. The midbrain is characterised by a pair of optic lobes. Hind-brain consists of cerebellum and medulla oblongata. The medulla oblongata passes out through the foramen magnum and continues into spinal cord, which is enclosed in the vertebral column.

Frog has different types of sense organs, namely organs of touch (sensory papillae), taste (taste buds), smell (nasal epithelium), vision (eyes) and hearing (tympanum with internal ears). Out of these, eyes and internal ears are well-organised structures and the rest are cellular aggregations around nerve endings. Eyes in a frog are a pair of spherical structures situated in the orbit in skull. These are simple eyes (possessing only one unit). External ear is absent in frogs and only tympanum can be seen externally. The ear is an organ of hearing as well as balancing (equilibrium).

Frogs have well organised male and female reproductive systems. Male reproductive organs consist of a pair of yellowish ovoid testes (Figure 7.3), which are found adhered to the upper part of kidneys by a double fold of peritoneum called mesorchium. Vasa efferentia are 10-12 in number that arise from testes. They enter the kidneys on their side and open into Bidder’s canal. Finally it communicates with the urinogenital duct that comes out of the kidneys and opens into the cloaca. The cloaca is a small, median chamber that is used to pass faecal matter, urine and sperms to the exterior.

Figure 7.3 Male reproductive system
Figure 7.3 Male reproductive system

The female reproductive organs include a pair of ovaries (Figure 7.4). The ovaries are situated near kidneys and there is no functional connection with kidneys. A pair of oviduct arising from the ovaries opens into the cloaca separately. A mature female can lay 2500 to 3000 ova at a time. Fertilisation is external and takes place in water. Development involves a larval stage called tadpole. Tadpole undergoes metamorphosis to form the adult.

Figure 7.4 Female reproductive system
Figure 7.4 Female reproductive system

Frogs are beneficial for mankind because they eat insects and protect the crop. Frogs maintain ecological balance because these serve as an important link of food chain and food web in the ecosystem. In some countries the muscular legs of frog are used as food by man.

Cockroaches are brown or black bodied animals that are included in class Insecta of Phylum Arthropoda. Bright yellow, red and green coloured cockroaches have also been reported in tropical regions. Their size ranges from ¼ inches to 3 inches (0.6-7.6 cm) and have long antenna, legs and flat extension of the upper body wall that conceals head. They are nocturnal omnivores that live in damp places throughout the world. They have become residents of human homes and thus are serious pests and vectors of several diseases.

The adults of the common species of cockroach, Periplaneta americana are about 34-53 mm long with wings that extend beyond the tip of the abdomen in males. The body of the cockroach is segmented and divisible into three distinct regions – head, thorax and abdomen (Figure 7.14). The entire body is covered by a hard chitinous exoskeleton (brown in colour). In each segment, exoskeleton has hardened plates called sclerites (tergites dorsally and sternites ventrally) that are joined to each other by a thin and flexible articular membrane (arthrodial membrane).

Figure 7.14 External features of cockroach
Figure 7.14 External features of cockroach

Head is triangular in shape and lies anteriorly at right angles to the longitudinal body axis. It is formed by the fusion of six segments and shows great mobility in all directions due to flexible neck (Figure 7.15). The head capsule bears a pair of compound eyes. A pair of thread like antennae arise from membranous sockets lying in front of eyes. Antennae have sensory receptors that help in monitoring the environment. Anterior end of the head bears appendages forming biting and chewing type of mouth parts. The mouthparts consisting of a labrum (upper lip), a pair of mandibles, a pair of maxillae and a labium (lower lip). A median flexible lobe, acting as tongue (hypopharynx), lies within the cavity enclosed by the mouthparts (Figure 7.15b). Thorax consists of three parts – prothorax, mesothorax and metathorax. The head is connected with thorax by a short extension of the prothorax known as the neck. Each thoracic segment bears a pair of walking legs. The first pair of wings arises from mesothorax and the second pair from metathorax. Forewings (mesothoracic) called tegmina are opaque dark and leathery and cover the hind wings when at rest. The hind wings are transparent, membranous and are used in flight.

Figure 7.15 Head region of cockroach : (a) parts of head region
Figure 7.15 Head region of cockroach : (a) parts of head region
Figure 7.15 Head region of cockroach : (b) mouth parts
Figure 7.15 Head region of cockroach : (b) mouth parts

The abdomen in both males and females consists of 10 segments. In females, the 7th sternum is boat shaped and together with the 8th and 9th sterna forms a brood or genital pouch whose anterior part contains female gonopore, spermathecal pores and collateral glands. In males, genital pouch or chamber lies at the hind end of abdomen bounded dorsally by 9th and 10th terga and ventrally by the 9th sternum. It contains dorsal anus, ventral male genital pore and gonapophysis. Males bear a pair of short, threadlike anal styles which are absent in females. In both sexes, the 10th segment bears a pair of jointed filamentous structures called anal cerci.

The alimentary canal present in the body cavity is divided into three regions: foregut, midgut and hindgut (Figure 7.16). The mouth opens into a short tubular pharynx, leading to a narrow tubular passage called oesophagus. This in turn opens into a sac like structure called crop used for storing of food. The crop is followed by gizzard or proventriculus. It has an outer layer of thick circular muscles and thick inner cuticle forming six highly chitinous plate called teeth. Gizzard helps in grinding the food particles. The entire foregut is lined by cuticle. A ring of 6-8 blind tubules called hepatic or gastric caeca is present at the junction of foregut and midgut, which secrete digestive juice. At the junction of midgut and hindgut is present another ring of 100-150 yellow coloured thin filamentous Malpighian tubules. They help in removal of excretory products from haemolymph. The hindgut is broader than midgut and is differentiated into ileum, colon and rectum. The rectum opens out through anus.

Figure 7.16 Alimentary canal of cockroach
Figure 7.16 Alimentary canal of cockroach

Blood vascular system of cockroach is an open type (Figure 7.17). Blood vessels are poorly developed and open into space (haemocoel). Visceral organs located in the haemocoel are bathed in blood (haemolymph). The haemolymph is composed of colourless plasma and haemocytes. Heart of cockroach consists of elongated muscular tube lying along mid dorsal line of thorax and abdomen. It is differentiated into funnel shaped chambers with ostia on either side. Blood from sinuses enter heart through ostia and is pumped anteriorly to sinuses again.

Figure 7.17 Open circulatory system of cockroach
Figure 7.17 Open circulatory system of cockroach

The respiratory system consists of a network of trachea, that open through 10 pairs of small holes called spiracles present on the lateral side of the body. Thin branching tubes (tracheal tubes subdivided into tracheoles) carry oxygen from the air to all the parts. The opening of the spiracles is regulated by the sphincters. Exchange of gases take place at the tracheoles by diffusion.

Excretion is performed by Malpighian tubules. Each tubule is lined by glandular and ciliated cells. They absorb nitrogenous waste products and convert them into uric acid which is excreted out through the hindgut. Therefore, this insect is called uricotelic. In addition, the fat body, nephrocytes and urecose glands also help in excretion.

The nervous system of cockroach consists of a series of fused, segmentally arranged ganglia joined by paired longitudinal connectives on the ventral side. Three ganglia lie in the thorax, and six in the abdomen. The nervous system of cockroach is spread throughout the body. The head holds a bit of a nervous system while the rest is situated along the ventral (belly-side) part of its body. So, now you understand that if the head of a cockroach is cut off, it will still live for as long as one week. In the head region, the brain is represented by supra-oesophageal ganglion which supplies nerves to antennae and compound eyes. In cockroach, the sense organs are antennae, eyes, maxillary palps, labial palps, anal cerci, etc. The compound eyes are situated at the dorsal surface of the head. Each eye consists of about 2000 hexagonal ommatidia (sing.: ommatidium). With the help of several ommatidia, a cockroach can receive several images of an object. This kind of vision is known as mosaic vision with more sensitivity but less resolution, being common during night (hence called nocturnal vision).

Cockroaches are dioecious and both sexes have well developed reproductive organs (Figure 7.18). Male reproductive system consists of a pair of testes one lying on each lateral side in the 4th -6th abdominal segments. From each testis arises a thin vas deferens, which opens into ejaculatory duct through seminal vesicle. The ejaculatory duct opens into male gonopore situated ventral to anus. A characteristic mushroom shaped gland is present in the 6th-7th abdominal segments which functions as an accessory reproductive gland. The external genitalia are represented by male gonapophysis or phallomere (chitinous asymmetrical structures, surrounding the male gonopore). The sperms are stored in the seminal vesicles and are glued together in the form of bundles called spermatophores which are discharged during copulation.

Figure 7.18 Reproductive system of cockroach : (a) male
Figure 7.18 Reproductive system of cockroach : (a) male

The female reproductive sytem consists of two large ovaries, lying laterally in the 2nd – 6th abdominal segments. Each ovary is formed of a group of eight ovarian tubules or ovarioles, containing a chain of developing ova. Oviducts of each ovary unite into a single median oviduct (also called vagina) which opens into the genital chamber. A pair of spermatheca is present in the 6th segment which opens into the genital chamber.

Figure 7.18 Reproductive system of cockroach : (b) female
Figure 7.18 Reproductive system of cockroach : (b) female

Sperms are transferred through spermatophores. Their fertilised eggs are encased in capsules called oothecae. Ootheca is a dark reddish to blackish brown capsule, about 3/8″ (8 mm) long. They are dropped or glued to a suitable surface, usually in a crack or crevice of high relative humidity near a food source. On an average, females produce 9-10 oothecae, each containing 14-16 eggs. The development of P. americana is paurometabolous, meaning there is development through nymphal stage. The nymphs look very much like adults. The nymph grows by moulting about 13 times to reach the adult form. The next to last nymphal stage has wing pads but only adult cockroaches have wings.

Many species of cockroaches are wild and are of no known economic importance yet. A few species thrive in and around human habitat. They are pests because they spoil food and contaminate it with their smelly excreta. They can transmit a variety of bacterial diseases by contaminating food material.


Cells, tissues, organs and organ systems split up the work in a way that ensures the survival of the body as a whole and exhibit division of labour. A tissue is defined as group of cells along with intercellular substances performing one or more functions in the body. Epithelia are sheet like tissues lining the body’s surface and its cavities, ducts and tubes. Epithelia have one free surface facing a body fluid or the outside environment. Their cells are structurally and functionally connected at junctions.

The Indian bullfrog, Rana tigrina, is the common frog found in India. Body is covered by skin. Mucous glands are present in the skin which is highly vascularised and helps in respiration in water and on land. Body is divisible into head and trunk. A muscular tongue is present, which is bilobed at the tip and is used in capturing the prey. The alimentary canal consists of oesophagous, stomach, intestine and rectum, which open into the cloaca. The main digestive glands are liver and pancreas. It can respire in water through skin and through lungs on land. Circulatory system is closed with single circulation. RBCs are nucleated. Nervous system is organised into central, peripheral and autonomic. The organs of urinogenital system are kidneys and urinogenital ducts, which open into the cloaca. The male reproductive organ is a pair of testes. The female reproductive organ is a pair of ovaries. A female lays 2500-3000 ova at a time. The fertilisation and development are external. The eggs hatch into tadpoles, which metamorphose into frogs.

The body of Cockroach (Periplaneta americana) is covered by chitinous exoskeleton. It is divided into head, thorax and abdomen. Segments bear jointed appendages. There are three segments of thorax, each bearing a pair of walking legs. Two pairs of wings are present, one pair each on 2nd and 3rd segment. There are ten segments in abdomen. Alimentary canal is well developed with a mouth surrounded by mouth parts, a pharynx, oesophagus, crop, gizzard, midgut, hindgut and anus. Hepatic caecae are present at the junction of foregut and midgut. Malpighian tubules are present at the junction of midgut and hindgut and help in excretion. A pair of salivary gland is present near crop. The blood vascular system is of open type. Respiration takes place by network of tracheae. Trachea opens outside with spiracles. Nervous system is represented by segmentally arranged ganglia and ventral nerve cord. A pair of testes is present in 4th-6th segments and ovaries in 2nd-6th segments. Fertilisation is internal. Female produces 9-10 ootheca bearing developing embryos. After rupturing of single ootheca sixteen young ones, called nymphs come out.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top